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Abstract. We discuss the exclusive radiative decays B → K∗γ and B → ργ in QCD factorization within the
Standard Model. The analysis is based on the heavy-quark limit of QCD. Our results for these decays are
complete to next-to-leading order in QCD and to leading order in the heavy-quark limit. Phenomenological
implications for branching ratios and isospin breaking effects are discussed. Special emphasis is placed on
constraining the CKM unitarity triangle from these observables.

1 Introduction

The rare radiative B decays belong to the most valua-
ble probes of the quark flavour sector (see [1] for a re-
cent review). The inclusive b → sγ mode, showing good
agreement of the theoretical next-to-leading-logarithmic
(NLL) QCD prediction and experimental measurements,
puts stringent bounds on physics beyond the standard mo-
del. CP-averaged branching ratios of exclusive radiative
channels are measured to be B(B0 → K∗0γ) = (4.18 ±
0.23) · 10−5 and B(B+ → K∗+γ) = (4.14 ± 0.33) · 10−5

[2], and bounded with 90% confidence level as B(B0 →
ω0γ) < 1.0 ·10−6, B(B0 → ρ0γ) < 1.2 ·10−6 and B(B+ →
ρ+γ) < 2.1 · 10−6 [3].

Whereas the inclusive decay can be treated perturba-
tively, bound state effects are essential for the exclusive
modes and have to be described by some nonperturbative
quantities like hadronic form factors and light-cone distri-
bution amplitudes (LCDAs). However, in the heavy-quark
limit mb � ΛQCD a systematic treatment of exclusive B
decays is possible within QCD [4]: Perturbatively calcu-
lable contributions to the matrix elements can be factori-
zed from nonperturbative form factors and universal light-
cone distribution amplitudes. We use the QCD factoriza-
tion technique for the exclusive radiative decays B → K∗γ
and B → ργ as in [5,6,7]. The ratio of the B → ργ and
B → K∗γ branching fractions is, at leading order in αs,
directly proportional to the side Rt in the standard uni-
tarity triangle (UT), where

Rt ≡
√

(1 − ρ̄)2 + η̄2 =
1
λ

∣
∣∣∣
Vtd

Vts

∣∣∣
∣ (1)

Having the complete NLL result for the decay amplitudes
in B → V γ at hand, we can calculate αs corrections to
their relation with Rt and evaluate the implications in the
(ρ̄, η̄) plane [8,9].

2 B → V γ at NLO in QCD

The effective weak Hamiltonian for b → s/dγ transitions
is

Heff =
GF√

2

∑

p=u,c

λ(s/d)
p

( 2∑

i=1

CiQ
p
i +

8∑

j=3

CjQj

)
(2)

where λ
(s/d)
p = V ∗

ps/dVpb. The relevant operators are the
current-current operators Qp

1,2, the QCD-penguin opera-
tors Q3...6, and the electro- and chromomagnetic penguin
operators Q7,8. To evaluate the hadronic matrix elements
of these operators we employ the heavy-quark limit mb �
ΛQCD to get the factorization formula [5,6]

〈V γ(ε)|Qi|B̄〉 = (3)

=
[
FB→V T I

i +
∫ 1

0
dξ dv T II

i (ξ, v)ΦB(ξ)ΦV (v)
]
· ε

where ε is the photon polarization 4-vector. Here FB→V is
a B → V transition form factor, and ΦB , ΦV are leading-
twist light-cone distribution amplitudes of the B meson
and the vector meson V , respectively. These quantities
are universal, nonperturbative objects. They describe the
long-distance dynamics of the matrix elements, which is
factorized from the perturbative, short-distance interac-
tions expressed in the hard-scattering kernels T I

i and T II
i .

To leading order in QCD and leading power in the heavy-
quark limit, Q7 gives the only contribution to the B → V γ
amplitude. At O(αs) the operators Q1...6 and Q8 start
contributing and the factorization formula becomes non-
trivial.

The relevant diagrams for the NLO hard-vertex cor-
rections T I

i were computed in [10] to get the virtual cor-
rections to the matrix elements for the inclusive b → sγ
mode at next-to-leading order. For the exclusive modes
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Fig. 1. O(αs) contribution at leading power to the hard-
scattering kernels T II

i from four-quark operators Qi (left) and
from Q8. The crosses indicate the places where the emitted
photon can be attached

the same corrections play the role of the perturbative type
I hard-scattering kernels. The non-vanishing contributions
to T II

i where the spectator participates in the hard scat-
tering are shown in Fig. 1. We can express both the type
I and type II contributions to the matrix elements 〈Qi〉 in
terms of the matrix element 〈Q7〉, an explicit factor αs,
and hard-scattering functions Gi and Hi which are given
explicitely in [6,11].

Weak annihilation contributions are suppressed by one
power of ΛQCD/mb but they are nevertheless calculable
in QCD factorization because in the heavy-quark limit
the colour-transparency argument applies to the emitted,
highly energetic vector meson. Including them we become
sensitive to the charge of the decaying B meson and thus
to isospin breaking effects.

3 Results

The total B̄ → V γ amplitude then can be written as

A(B̄ → V γ) =
GF√

2
[λuau

7 + λca
c
7] 〈V γ|Q7|B̄〉 (4)

where the factorization coefficients ap
7(V γ) consist of the

Wilson coefficient C7, the contributions from the type I
and type II hard-scattering and annihilation corrections.
One finds a sizeable enhancement of the leading order va-
lue, dominated by the T I -type correction. The net enhan-
cement of a7 at NLO leads to a corresponding enhance-
ment of the branching ratios, for fixed value of the form
factor. This is illustrated in Fig. 2, where we show the re-
sidual scale dependence for B(B̄ → K̄∗0γ) and B(B− →
ρ−γ) at leading and next-to-leading order. Our central va-
lues for the B → K∗γ branching ratios are higher than the
quoted experimental measurements. The dominant uncer-
tainty in the theoretical values comes from the B → V γ
form factors. We used the light-cone sum rule (LCSR) re-
sults FK∗ = 0.38 ± 0.06 and Fρ = 0.29 ± 0.04 from [12].
A recent preliminary lattice QCD determination, FK∗ =
0.25±0.05±0.02 [13], would give a better agreement with
the experimental central values.

The charge averaged isospin breaking ratio can be de-
fined as

∆(V γ) =
Γ (B0 → V 0γ) − vΓ (B± → V ±γ)
Γ (B0 → V 0γ) + vΓ (B± → V ±γ)

(5)

with v = 1 for V = K∗ and v = 1/2 for V = ρ. This ra-
tio has a reduced sensitivity to the nonperturbative form

µ [GeV]

B
(B−

0  →
 K−

*0
γ)

 [1
0-5

] NLO
+

7.4 10-5

+
4.7 10-5

NLOI

LO

0

1

2

3

4

5

6

7

8

9

3 4 5 6 7 8
µ [GeV]

B
(B

-  →
 ρ

- γ)
 [1

0-6
]

NLO+
1.6 10-6

+
1.2 10-6

NLOI

LO

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

3 4 5 6 7 8

Fig. 2. Dependence of the branching fractions B(B̄0 → K̄∗0γ)
and B(B− → ρ−γ) on the renormalization scale µ. The dot-
ted line shows the LO, the dash-dotted line the NLO result
including type-I corrections only and the solid line shows the
complete NLO result

factors. As already discussed, in our approximations, iso-
spin breaking is generated by weak annihilation contribu-
tions. Kagan and Neubert found a large effect from the
penguin operator Q6 on the isospin asymmetry ∆(K∗γ)
[14]. The prediction ∆(K∗γ) = (3.9+3.1

−1.9)% is in agreement
with the experimental value ∆(K∗γ)exp = (4.5 ± 4.9)%.
For B → ργ we find a strong dependence of the isospin
asymmetry on the angle γ of the unitarity triangle. The γ
dependence is in particular pronounced for the zero cros-
sing of ∆(ργ) around γ = 60◦, the value favoured by the
standard UT fits.

4 Implications for the UT analysis

We can use observables in the B → V γ decay modes to get
information on parameters in the (ρ̄, η̄) unitarity triangle
plane. The cleanest observable is the ratio of the neutral
B → ργ and B → K∗γ branching ratios. (We choose
here the neutral modes because annihilation effects could
be sizeable in B± → ρ±γ. However, those effect can be
estimated and the charged mode can also be used for a
similar analysis.)

We define

R00 ≡ B(B0 → ρ0γ)
B(B0 → K∗0γ)

(6)

≈ 1
2

∣
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Vtd

Vts

∣∣
∣∣

2

ξ−2 (1 + ∆(ρ̄, η̄)) (7)

where CP averaged branching fractions are understood.
Here ∆(ρ̄, η̄) is a small perturbative correction [9] and
ξ = FK∗/Fρ, the ratio of the form factors, is essentially the
only source of theoretical uncertainty. We use the LCSR
estimate ξ = 1.33 ± 0.13 [12]. A preliminary lattice va-
lue is ξ = 1.1 ± 0.1 [13]. Experimentally, so far only an
upper limit on R00 exists. Because the B → ωγ bran-
ching ratio is up to tiny corrections the same as the one
for B0 → ρ0γ [9] and its experimental limit is tighter, we
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Fig. 3. Impact of the experimental upper bound on R00 in the
(ρ̄, η̄) plane. The width of the dark band reflects the variation of
ξ. The intersection with the light-shaded sin(2β) band defines
the apex of the unitarity triangle and the length Rt

Fig. 4. Same as Fig. 3 including the implication of a measure-
ment of ∆(ργ)exp = 0 (curved band on the right). The width
of the band reflects the theoretical uncertainties from varying
the hadronic parameter λB and the renormalization scale µ.
(The effect of isospin breaking in the form factors is neglected
here)

use it to get R
exp
00 < 0.024. If we use in addition the ex-

perimental measurement sin(2β) = 0.734 ± 0.054 [15] we
can construct the overlap of the R00 and sin(2β) bands
and extract the length Rt as shown in Fig. 3. The dashed
curve in Fig. 3 was obtained setting ξ = 1 in (7). This
can be viewed as the lowest possible value. If R00 were
measured at its current experimental bound R00 = 0.024,
the dashed line would correspond to a conservative lower
bound on Rt. The value Rt < 1.24 from R00 is already
becoming comparable with the constraints from ∆MBd

and ∆MBs . It is possible that the experimental measure-
ment of R00 may actually be achieved before the measu-
rement of ∆MBs . Once a measurement of both the char-
ged and neutral B → ργ modes is available, one can also
use ∆(ργ) to constrain the unitarity triangle. For illust-
ration purposes we plot in Fig. 4 in addition to the R00
and sin(2β) bands the implication of an assumed measu-
rement of ∆(ργ)exp = 0, which would correspond to the
Standard Model prediction for a CKM angle γ = 60◦.

5 Conclusions and outlook

We have discussed a systematic and model-independent
NLL framework for the rare radiative decays B → V γ ba-

sed on the heavy-quark limit mb � ΛQCD. As observables
of primary interest we considered the branching fractions,
the ratio R00 of the neutral B → ργ and B → K∗γ bran-
ching fractions, and the isospin breaking ratios ∆(K∗γ)
and ∆(ργ). Our main focus was on the implications of
measurements of these quantities on the (ρ̄, η̄) plane of
the CKM unitarity triangle. The theoretically cleanest
quantities are R00 and ∆(ργ) which, however, are not yet
measured experimentally. We hope that they will become
accessible in the near future with new data from the B
factories.
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